Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.621
Filtrar
1.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560761

RESUMO

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Assuntos
Antineoplásicos , Fotoquimioterapia , Porfobilinogênio/análogos & derivados , Pró-Fármacos , Humanos , Boro/farmacologia , 60439 , Corantes , Pró-Fármacos/farmacologia , Cobalto/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Antineoplásicos/efeitos da radiação , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Oxigênio Singlete/metabolismo , Luz
2.
Sci Rep ; 14(1): 8265, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594281

RESUMO

Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioma , Neoplasias da Medula Espinal , Ratos , Animais , Neoplasias Encefálicas/patologia , Ratos Endogâmicos F344 , Boro , Pesquisa Translacional Biomédica , Compostos de Boro/farmacologia , Glioma/patologia
3.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542161

RESUMO

Photodynamic therapy (PDT) relies on the combined action of a photosensitizer (PS), light at an appropriate wavelength, and oxygen, to produce reactive oxygen species (ROS) that lead to cell death. However, this therapeutic modality presents some limitations, such as the poor water solubility of PSs and their limited selectivity. To overcome these problems, research has exploited nanoparticles (NPs). This project aimed to synthesize a PS, belonging to the BODIPY family, covalently link it to two NPs that differ in their lipophilic character, and then evaluate their photodynamic activity on SKOV3 and MCF7 tumor cell lines. Physicochemical analyses demonstrated that both NPs are suitable for PDT, as they are resistant to photobleaching and have good singlet oxygen (1O2) production. In vitro biological analyses showed that BODIPY has greater photodynamic activity in the free form than its NP-bounded counterpart, probably due to greater cellular uptake. To evaluate the main mechanisms involved in PDT-induced cell death, flow cytometric analyses were performed and showed that free BODIPY mainly induced necrosis, while once bound to NP, it seemed to prefer apoptosis. A scratch wound healing test indicated that all compounds partially inhibited cellular migration of SKOV3 cells.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Nanopartículas/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Linhagem Celular Tumoral , Oxigênio
4.
Chem Soc Rev ; 53(8): 3976-4019, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450547

RESUMO

Mitochondria are essential for a diverse array of biological functions. There is increasing research focus on developing efficient tools for mitochondria-targeted detection and treatment. BODIPY dyes, known for their structural versatility and excellent spectroscopic properties, are being actively explored in this context. Numerous studies have focused on developing innovative BODIPYs that utilize optical signals for imaging mitochondria. This review presents a comprehensive overview of the progress made in this field, aiming to investigate mitochondria-related biological events. It covers key factors such as design strategies, spectroscopic properties, and cytotoxicity, as well as mechanism to facilitate their future application in organelle imaging and targeted therapy. This work is anticipated to provide valuable insights for guiding future development and facilitating further investigation into mitochondria-related biological sensing and phototherapy.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Mitocôndrias , Fotoquimioterapia , Compostos de Boro/química , Compostos de Boro/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Corantes Fluorescentes/química , Animais , Imagem Óptica , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
5.
Dalton Trans ; 53(8): 3579-3588, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38314620

RESUMO

Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Compostos de Boro/farmacologia , Superóxidos
6.
Anal Chem ; 96(8): 3362-3372, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38348659

RESUMO

Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Compostos de Boro/farmacologia , Compostos de Boro/química , Adjuvantes Imunológicos/farmacologia , Glicoproteínas de Membrana , Receptores Imunológicos
7.
J Trace Elem Med Biol ; 83: 127408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387426

RESUMO

BACKGROUND: Montmorillonite (MMT) is a biocompatible nanoclay and its incorporation into polymeric matrix not only improves the polymer's wettability/biodegradability, but also enhances cellular proliferation, and differentiation. On the other hand, the positive effect of boron (B) on the healing cascade and its antibacterial properties have drawn the attention of researchers. MATERIALS & METHODS: In this regard, B compounds in different chemical structures, boron nitride (BN), zinc borate (ZB), and phenylboronic acid (PBA), were adsorbed onto MMT and then, poly (lactic acid) (PLA) based MMT/B including micron/submicron fibers were fabricated by electrospinning. RESULTS: The incorporation of MMT nanoparticles into the PLA demonstrated a porous fiber topography with enhanced thermal properties, water uptake capacity, and antibacterial effect. Furthermore, the composites including BN, ZB, and PBA showed bacteriostatic effects against Gram-negative and Gram-positive pathogenic bacteria (Escherichia coli and Staphylococcus aureus). In-vitro cell culture studies performed with human dermal fibroblasts (HDF) indicated the non-toxic effect of B compounds. The results showed that incorporation of MMT supported cell adhesion and proliferation, and further addition of B compounds especially PBA increased cell viability for 14 days. CONCLUSION: The results illustrated the acceptable characteristics of the B-containing composites and their favorable effect on the cells, demonstrating their potential as a skin tissue engineering product.


Assuntos
Nanofibras , Polímeros , Humanos , Polímeros/farmacologia , Polímeros/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Nanofibras/química , Argila , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres/farmacologia , Poliésteres/química , Compostos de Boro/farmacologia , Bandagens
8.
Inorg Chem ; 63(7): 3402-3410, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38330908

RESUMO

An efficient synthesis of 3-pyrrolylBODIPY dyes has been developed from a rational mixture of various aromatic aldehydes and pyrrole in a straightforward condensation reaction, followed by in situ successively oxidative nucleophilic substitution using a one-pot strategy. These resultant 3-pyrrolylBODIPYs without blocking substituents not only exhibit the finely tunable photophysical properties induced by the flexible meso-aryl substituents but also serve as a valuable synthetic framework for further selective functionalization. As a proof of such potential, one 3-pyrrolylBODIPY dye (581/603 nm) through the installation of the morpholine group is applicable for lysosome-targeting imaging. Furthermore, an ethene-bridged 3,3'-dipyrrolylBODIPY dimer was constructed, which displayed a near-infrared (NIR) emission extended to 1200 nm with a large fluorescence brightness (2840 M-1 cm-1). The corresponding dimer nanoparticles (NPs) afforded a high photothermal conversion efficiency (PCE) value of 72.5%, eventually resulting in favorable photocytotoxicity (IC50 = 9.4 µM) and efficient in vitro eradication of HeLa cells under 808 nm laser irradiation, highlighting their potential application for photothermal therapy in the NIR window.


Assuntos
Corantes , Nanopartículas , Humanos , Células HeLa , Compostos de Boro/farmacologia , Imagem Óptica , Polímeros
9.
Sci Rep ; 14(1): 2572, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296985

RESUMO

Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.


Assuntos
Glicina/análogos & derivados , Peptidomiméticos , Peptidomiméticos/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X , Compostos de Boro/farmacologia , Compostos de Boro/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Bactérias/metabolismo
10.
Bioorg Med Chem ; 99: 117583, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198943

RESUMO

Developing effective near-infrared (NIR) photosensitizers (PSs) has been an attractive goal of photodynamic therapy (PDT) for cancer treatment. In this study, we synthesized N, N-diethylaminomethylphenyl-containing Aza-BODIPY photosensitizers and comprehensively investigated their photophysical/photochemical properties, as well as cell-based and animal-based anti-tumor studies. Among them, BDP 1 has strong NIR absorption at 680 nm and higher singlet oxygen yield in PBS which showed favorable pH-activatable and lysosome-targeting ability. BDP 1 could be easily taken up by tumor cells and showed negligible dark activity (IC50 > 50 µM), however strong phototoxicity upon exposure to light irradiation. The acceptable fluorescence emission from BDP 1 allowed convenient in vivo fluorescence imaging for organ distribution studies in mice. After PDT treatment with upon single time PDT treatment at the beginning using relatively low light dose (54 J/ cm2), BDP 1 (2 mg/kg, 0.1 mL) was found to have strong efficacy to inhibit tumor growth and even to ablate off tumor without causing body weight loss. Therefore, pH-activatable and lysosome-targeted PS may become an effective way to develop potent PDT agent.


Assuntos
Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Compostos de Boro/química , Neoplasias/tratamento farmacológico , Lisossomos
11.
Eur J Med Chem ; 264: 116012, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056302

RESUMO

The discovery of new photosensitizer drugs with long wavelength Uv-vis absorption, high efficiency and low side-effects is still a challenge in photodynamic therapy. Here a series of novel meso-substitutedphenyl thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. All these compounds have strong absorption at 640-680 nm and obvious fluorescence emission at 650-760 nm. They exhibited high singlet oxygen generation ability and significant photodynamic efficiency against Eca-109 cancer cells. Compounds II4, II6, II9, II10 and II13 could generate intracellular ROS and induce cell apoptosis after laser irradiation, which displayed superior photodynamic efficiency against Eca-109 cells than Temoporfin in vitro and in vivo. Among them, compound II4 specifically exhibited excellent anti-tumor efficacy, and could be selected as a new drug candidate for PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Tiofenos/farmacologia , Compostos de Boro/farmacologia , Oxigênio Singlete
12.
Biol Trace Elem Res ; 202(1): 346-359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37464169

RESUMO

This study aimed to evaluate the antibacterial activity of nine boron derivatives against biofilm-forming pathogenic bacteria. The effect of boron derivatives (CMB, calcium metaborate; SMTB, sodium metaborate tetrahydrate; ZB, zinc borate; STFB, sodium tetra fluorine borate; STB, sodium tetraborate; PTFB, potassium tetra fluor borate; APTB, ammonium pentabo-rate tetrahydrate; SPM, sodium perborate monohydrate; Borax, ATFB, ammonium tetra fluorine borate) on bacteria isolated from blood culture was determined by the minimum inhibitory concentration (MIC) method. Then, biofilm formation potentials on microplates, tubes, and Congo red agar were examined. The cytotoxicity of boron derivatives was determined by using WST-1-based methods. The interaction between the biofilm-forming bacteria, fibroblast cells, and boron derivatives was determined with the infection model. We found that the sodium metaborate tetrahydrate molecule was effective against all pathogens. According to the optical density values detected at 630 nm in microplates, meticillin-resistant Staphylococcus aureus was observed to have the most substantial biofilm ability at 0.257 nm. As a result of cytotoxicity studies, it has been determined that a 1 µg/L concentration of boron derivatives is not toxic to fibroblast L929 cells. In cell culture experiments, these boron derivatives have very serious inhibitory activity against biofilm-forming pathogens in a short treatment period, such as 2-4 h. Furthermore, using these molecules on inanimate surfaces affected by biofilms would be appropriate instead of living cells.


Assuntos
Compostos de Amônio , Staphylococcus aureus Resistente à Meticilina , Boratos/farmacologia , Boro/farmacologia , Flúor/farmacologia , Antibacterianos/farmacologia , Compostos de Boro/farmacologia , Biofilmes , Bactérias , Compostos de Amônio/farmacologia , Testes de Sensibilidade Microbiana
13.
Cell Chem Biol ; 31(1): 139-149.e14, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-37967558

RESUMO

A novel class of benzoxaboroles was reported to induce cancer cell death but the mechanism was unknown. Using a forward genetics platform, we discovered mutations in cleavage and polyadenylation specific factor 3 (CPSF3) that reduce benzoxaborole binding and confer resistance. CPSF3 is the endonuclease responsible for pre-mRNA 3'-end processing, which is also important for RNA polymerase II transcription termination. Benzoxaboroles inhibit this endonuclease activity of CPSF3 in vitro and also curb transcriptional termination in cells, which results in the downregulation of numerous constitutively expressed genes. Furthermore, we used X-ray crystallography to demonstrate that benzoxaboroles bind to the active site of CPSF3 in a manner distinct from the other known inhibitors of CPSF3. The benzoxaborole compound impeded the growth of cancer cell lines derived from different lineages. Our results suggest benzoxaboroles may represent a promising lead as CPSF3 inhibitors for clinical development.


Assuntos
Antineoplásicos , Compostos de Boro , Fator de Especificidade de Clivagem e Poliadenilação , Endonucleases , Precursores de RNA , Processamento Pós-Transcricional do RNA , Fator de Especificidade de Clivagem e Poliadenilação/antagonistas & inibidores , Fator de Especificidade de Clivagem e Poliadenilação/química , Endonucleases/antagonistas & inibidores , Precursores de RNA/genética , Precursores de RNA/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral
14.
Chembiochem ; 25(3): e202300653, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095754

RESUMO

In the realm of cancer therapy and treatment of bacterial infection, photothermal therapy (PTT) stands out as a potential strategy. The challenge, however, is to create photothermal agents that can perform both imaging and PTT, a so-called theranostic agent. Photothermal agents that absorb and emit in the near-infrared region (750-900 nm) have recently received a lot of attention due to the extensive penetration of NIR light in biological tissues. In this study, we combined pyrazole with aza-BODIPY (PY-AZB) to develop a novel photothermal agent. PY-AZB demonstrated great photostability with a photothermal conversion efficiency (PCE) of up to 33 %. Additionally, PY-AZB can permeate cancer cells at a fast accumulation rate in less than 6 hours, according to the confocal images. Furthermore, in vitro photothermal therapy results showed that PY-AZB effectively eliminated cancer cells by up to 70 %. Interestingly, PY-AZB exhibited antibacterial activities against both gram-negative bacteria, Escherichia coli 780, and gram-positive bacteria, Staphylococcus aureus 1466. The results exhibit a satisfactory bactericidal effect against bacteria, with a killing efficiency of up to 100 % upon laser irradiation. As a result, PY-AZB may provide a viable option for photothermal treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Fototerapia , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Escherichia coli , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Chem Commun (Camb) ; 59(83): 12447-12450, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37779498

RESUMO

A cationic BODIPY-based G-quadruplex-selective stabiliser is developed and shown to decrease cancer cell migration-invasion up to 90%. The expression of critical genes (HIF1α, VIM, CDH1) related to metastasis is modulated. The stabiliser reprograms hypoxia-adaptive metabolism and an 1.82-fold increase in O2 consumption, enabling back-to-normal switching of energy metabolism, is observed. Stabilisers with a strong G-quadruplex affinity (0.38 µM Kd) significantly contribute to small molecule anti-cancer approaches.


Assuntos
Quadruplex G , Neoplasias , Compostos de Boro/farmacologia
16.
Eur J Med Chem ; 259: 115705, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544182

RESUMO

A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.


Assuntos
Carcinoma , Oxigênio Singlete , Humanos , Oxigênio Singlete/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Células HEK293 , Compostos de Boro/farmacologia , Compostos de Boro/química , Halogênios
17.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511596

RESUMO

Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Boro , Oxigênio Singlete/química , Fotoquimioterapia/métodos , Compostos de Boro/farmacologia , Compostos de Boro/química
18.
Turk J Med Sci ; 53(3): 619-629, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37476906

RESUMO

BACKGROUND: Gastrointestinal health is essential for maintaining a healthy lifestyle. Improving nutrient absorption and energy metabolism are the critical targets for intestinal health. This study aimed to determine the effects of different boron (B) derivatives on nutrient digestibility, intestinal nutrient transporters, and lipid metabolism in rats. METHODS: Twenty-one rats were allocated to three groups (n = 7) as follows: (i) Control, (ii) Sodium pentaborate pentahydrate (SPP), and (iii) boric acid (BA). The rats were fed a chow diet (AIN-93M) and supplemented with 8 mg/kg elemental B from SPP (45.2 mg/kg BW) and BA (42.7 mg/kg BW) via oral gavage every other day for 12 weeks. The nutrient digestibility of rats in each group was measured using the indigestible indicator (chromium oxide, Cr2 O3, 0.20%). At the end of the experiment, animals were decapitated by cervical dislocation and jejunum, and liver samples were taken from each animal. The nutrient transporters and lipid-regulated transcription factors were determined by RT-PCR. RESULTS: The nutrient digestibility (except for ash) was increased by SPP and BA supplementation (p < 0.05). SPP and BA-supplemented rats had higher jejunal glucose transporter 1 (GLUT1), GLUT2, GLUT5, sodium-dependent glucose transporter 1 (SGLT1), fatty acid transport protein-1 (FATP1), and FATP4 mRNA expression levels compared to nonsupplemented rats (p < 0.0001). BA-supplemented rats had remarkably higher peroxisome proliferator-activated receptor gamma (PPARγ) levels than nonsupplemented rats (p < 0.0001). In contrast, sterol regulatory element-binding protein 1c (SREBP-1c), liver X receptor alpha (LxR-α), and fatty acid synthase (FAS) levels decreased by SPP supplementation compared to other groups (p < 0.05). DISCUSSION: SPP and BA administration enhanced nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism in rats.


Assuntos
Intestinos , Metabolismo dos Lipídeos , Ratos , Animais , Transportador de Glucose Tipo 1/metabolismo , Fígado , Compostos de Boro/metabolismo , Compostos de Boro/farmacologia
19.
ACS Appl Bio Mater ; 6(7): 2837-2848, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37319103

RESUMO

Diseases caused by bacterial infection have resulted in serious harm to human health. It is crucial to develop a multifunctional antibiotic-independent antibacterial platform for combating drug-resistant bacteria. Herein, titanium diboride (TiB2) nanosheets integrated with quaternized chitosan (QCS) and indocyanine green (ICG) were successfully prepared as a synergetic photothermal/photodynamic antibacterial nanoplatform (TiB2-QCS-ICG). The TiB2-QCS-ICG nanocomposites exhibit effective photothermal conversion efficiency (24.92%) and excellent singlet oxygen (1O2) production capacity simultaneously under 808 nm near-infrared irradiation. QCS improved TiB2 stability and dispersion, while also enhancing adhesion to bacteria and further accelerating the destruction of bacteria by heat and 1O2. In vitro experiments indicated that TiB2-QCS-ICG had excellent antibacterial properties with an inhibition rate of 99.99% against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), respectively. More importantly, in vivo studies revealed that the nanoplatform can effectively inhibit bacterial infection and accelerate wound healing. The effective wound healing rate in the TiB2-QCS-ICG treatment group was 99.6% which was much higher than control groups. Taken together, the as-developed TiB2-QCS-ICG nanocomposite provides more possibilities to develop metal borides for antibacterial infection applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Escherichia coli , Verde de Indocianina/farmacologia , Compostos de Boro/farmacologia , Nanocompostos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
20.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298796

RESUMO

Drug leads with a high Fsp3 index are more likely to possess desirable properties for progression in the drug development pipeline. This paper describes the development of an efficient two-step protocol to completely diastereoselectively access a diethanolamine (DEA) boronate ester derivative of monosaccharide d-galactose from the starting material 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose. This intermediate, in turn, is used to access 3-boronic-3deoxy-d-galactose for boron neutron capture therapy (BNCT) applications. The hydroboration/borane trapping protocol was robustly optimized with BH3.THF in 1,4-dioxane, followed by in-situ conversion of the inorganic borane intermediate to the organic boron product by the addition of DEA. This second step occurs instantaneously, with the immediate formation of a white precipitate. This protocol allows expedited and greener access to a new class of BNCT agents with an Fsp3 index = 1 and a desirable toxicity profile. Furthermore, presented is the first detailed NMR analysis of the borylated free monosaccharide target compound during the processes of mutarotation and borarotation.


Assuntos
Boranos , Terapia por Captura de Nêutron de Boro , Neoplasias , Humanos , Monossacarídeos , Galactose , Boro/química , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias/tratamento farmacológico , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...